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Binary data corruption due to a Brownian agent

T. J. Newman and Wannapong Triampo
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

~Received 24 November 1998!

We introduce a model of binary data corruption induced by a Brownian agent~active random walker! on a
d-dimensional lattice. A continuum formulation allows the exact calculation of several quantities related to the
density of corrupted bitsr, for example, the mean ofr and the density-density correlation function. Excellent
agreement is found with the results from numerical simulations. We also calculate the probability distribution
of r in d51, which is found to be log normal, indicating that the system is governed by extreme fluctuations.
@S1063-651X~99!16105-1#

PACS number~s!: 05.40.2a, 66.30.Jt, 82.30.Vy
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I. INTRODUCTION

Brownian motion is one of the fundamental processes
nature. Originally observed in the irregular motion of poll
grains by the botanist Brown@1#, and cast into the languag
of the diffusion equation by Einstein@2#, it has now been
applied, in the mathematical framework of random wa
@3#, to an enormous variety of processes in the physical
ences and beyond. A very rich field of research has b
built up around the behavior of a random walk coupled t
disordered environment@4#, a good example being th
anomalous diffusion of electrons in a disordered medium@5#.
Also, one can consider a random walkerbeing the disorder-
ing agent in its environment. Applications of the latter i
clude the tagged diffusion of atoms in a crystal@6–8# or
magnetic disordering due to a wandering vacancy@9#.

In this paper we will introduce a particularly simple e
ample of an active random walker~or Brownian agent! dis-
ordering its environment. Although the model is interesti
in its own right, we believe it will have a useful applicatio
to the study of data corruption in ultrasmall storage devic
Before pursuing this connection, we shall briefly describe
model~which will be more carefully defined in the next se
tion!. The two main features of the model are, first, that
Brownian agent~BA! performs a pure random walk—it i
not affected by the environment in any way. Second,
environment is bistable. That is to say, it is composed
elements which may only exist in one of two possible sta
~see Ref.@10# for a loosely related random walk process!.
Thus we can consider the environment to be compose
binary data~our favored realization!, magnetic spins, chemi
cal speciesA andB, and so on. As the BA wanders throug
the environment it has a certain probability to switch t
value of an element in its immediate vicinity. Thus, if w
start with a system in which all elements exist in the sa
state~‘‘up,’’ say!, and introduce the BA at the origin, the
after some time, there will be a region around the origin
which the elements will be found in a mixture of ‘‘up’’ an
‘‘down’’ states. Naturally, the linear size of the region w
grow on average asAt. A more subtle question concerns
the degree of disordering which exists for elements wit
this region and, also, their spatial correlations. As we sh
see, the statistics of the disordered elements is very rich.
is most convincingly demonstrated by the dominance of
treme fluctuations; for instance, the distribution of disorde
PRE 591063-651X/99/59~5!/5172~15!/$15.00
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elements is log normal. Thus, typical and average events
quite distinct, and become ever more so as time proceed

Before giving an outline of the paper we shall say a fe
words about the potential relevance of this system to d
corruption. With the advent of semiconductor memories@for
dynamic random access memories~DRAM’s! and various
types of read-only memories~ROM’s!#, there has been a
tremendous drive within the semiconductor industry to p
duce ever-smaller memory devices@11,12#. There are many
properties~e.g., stability, power consumption, volatility, an
cost! which must be balanced in the design of such devic
These factors determine the type of material used, and
geometry, dimension, and architecture of the device.~For
instance, three-dimensional arrays have a very efficient
dress structure, and are stable against interference from b
bardinga particles, but are very expensive to produce@11#.!
One of the main issues is the stability, or reliability, of th
device. In semiconductor memories, there are many phys
effects which can create hard errors~destruction or corrup-
tion of the device itself! or soft errors~corruption of the data
stored in the device!. In the latter category, the most com
mon problems originate from electron clouds caused bya
particles, but soft errors may also arise from electromigrat
and charge diffusion@13#. The key point is that different
corruption mechanisms operate on different time sca
~leading to the famous bathtub curve of device reliabil
@12#!. It is therefore important to know on what time scal
one should expect significant corruption from a given p
cess. The model we propose here~namely, data corruption
via a BA! is probably not relevant for today’s semiconduct
devices, since there are so many ‘‘mesoscopic’’ proces
occurring on the level of a flip-flop that subtle correlatio
due to a BA will be washed out. However, we can lo
ahead to the new generation of~quantum! storage devices, in
which a single electron~controlled in a gate via Coulomb
blockade! can store one bit of data. In this case, a mic
scopic BA may indeed play an important role in data corru
tion, and it will be necessary to understand its time sca
and efficacy of operation, so that we can minimize its infl
ence. This paper constitutes a first step towards gaining s
an understanding.

The outline of this paper is as follows. In the next secti
we shall carefully define the model~using discrete space an
time! within the master equation formulation of stochas
processes. We shall derive some general statistical prope
5172 ©1999 The American Physical Society
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PRE 59 5173BINARY DATA CORRUPTION DUE TO A BROWNIAN AGENT
of the process, but we shall not enter into any explicit cal
lations. This is deferred to Secs. III–V in which we introdu
a very simple continuum theory for the process, which
motivated by viewing the process as a stochastic cell
automaton. In Sec. III we derive this continuum theory a
using the complementary descriptions of quantum mecha
~i.e., the Schro¨dinger equation and the Feynman path in
gral!, we shall demonstrate its equivalence to the ma
equation formulation of Sec. II. We then examine the case
one spatial dimension in Sec. IV. The model is tractable,
a great deal of information may be derived concerning
mean density of disordered elements, their spatial corr
tions, and finally their entire distribution function. In Sec.
we briefly study higher dimensions, and derive some gen
statistical properties for the process, for an arbitrary spa
coupling between the BA and its environment. We also
rive an expression for the mean density of disordered
ments in two dimensions. In Sec. VI we present results fr
extensive numerical simulations of the discrete process
all cases, we find good agreement between the simula
results and the predictions of the continuum theory. We
the paper with a summary of the work and some ideas
future study.

II. DISCRETE FORMULATION OF THE MODEL

We consider binary data bits on ad-dimensional hypercu-
bic lattice. For convenience we shall represent each bit b
Ising spins r , where the indexr represents a discrete lattic
vector. The spin takes the value11 (21) for a data bit
which is uncorrupted~corrupted!. Thus, the initial configu-
ration is a lattice of spins, all of which take the value11.
@We prefer to describe the system almost exclusively
terms of the spin variables. Thus we shall use phrases su
‘‘magnetization density’’ or ‘‘global magnetization.’’ The
translation of these quantities to the corresponding prope
for corrupted data bits is immediate, as one only need rep
s r by (122nr), wherenr denotes the presence~with value
unity! or absence~with value zero! of a corrupted bit. Simi-
larly, we shall often refer to the average magnetization d
sity m, which is related to the average density of corrup
bits r̄ via m5122r̄.# We denote the position of the BA b
the lattice vectorR. At each time step, the BA has a pro
ability p of making a jump to one of its (2d) nearest neigh-
bors. For the sake of generality, we will not insist that t
BA always flip a spin~i.e., change a data bit! as it moves.
Thus, on a given jump, we allow the BA to flip the spin
the site it is leaving, with a probabilityq. We illustrate the
process in Fig. 1, for the cased52 andq51. In this section
we shall describe the process via a master equation@14#.
Namely, we shall define the dynamics through the evolut
of the distributionP(R,$s r%,t), which is the probability that
at timet the BA is at positionR and the spins have configu
ration $s r%. Given the above rules, the master equation ta
the form

P~R,$s r%,t1dt !5~12p!P~R,$s r%,t !

1
p~12q!

2d (
l

P~R1 l,$s r%,t !

1
pq

2d(l
P~R1 l, . . . ,2sR1 l , . . . ,t !,

~1!
-
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where$ l% represent the 2d orthogonal lattice vectors~which
have magnitudel ).

The natural quantities to extract from the distributionP
are marginal averages. The simplest is the mean value o
spin at positionr1 at time t, given the BA is at positionR.
This is defined via

Q~r1 ,R,t ![Trs s r1
P~R,$s r%,t !. ~2!

Higher-order marginal averages may be defined accordin
Performing the spin trace over the master equation wit
weight of s r yields

Q~r ,R,t1dt !2Q~r ,R,t !

5
p

2d(l
@Q~r ,R1 l,t !2Q~r ,R,t !#

2
pq

d
Q~r ,r ,t !(

l
d r ,R1 l . ~3!

The above equation has a physically appealing form. T
rate of change ofQ has two contributions. The first is lattic
diffusion, as given by the first sum on the right-hand si
~RHS! The second contribution vanishes unless the spin
question is in the immediate vicinity of the BA, in whic
case it acts as a sink.

At this point in the discussion it is worthwhile to consid
the continuum limit. Namely, we take the time scaledt and
the lattice scalel to zero, and define a diffusion constantD
[2l 2p/dt. We also introduce a couplingl}pqld/dt. Then
replacing the Kroneckerd function in Eq.~3! by a Diracd
function we find

] tQ~r ,R,t !5
D

2
¹R

2Q~r ,R,t !2lQ~r ,r ,t !dd~r2R!. ~4!

It is important to note that this continuum equation is n
strictly derived from Eq.~3!, as we have not proved that th
continuum limit exists. In fact, we shall find that ford>2,
the lattice scalel is crucial, and consequently we must soft
the Dirac d function to a functionD l(r ) which is sharply
peaked~over a linear scalel ) with unit integral overR d.
One actually expects this to be the case, as Eq.~4! is the
imaginary-time Schro¨dinger equation for a particle under th
influence of a repulsived-function potential.~Note that the
independent spatial variable in this quantum system isR,

FIG. 1. Illustration of the data corruption process ford52 and
q51. The initial uncorrupted state is shown on the left, with t
BA represented by the solid circle. On the right we show a typi
walk of ;20 steps. The BA flips a spin with each visit; so tho
spins visited an even number of times are restored to their orig
value.
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5174 PRE 59T. J. NEWMAN AND WANNAPONG TRIAMPO
with the variabler simply labeling the position of the poten
tial.! It is well known @16# that the repulsived-function po-
tential is ‘‘invisible’’ to the particle ford>2, and one usu-
ally cures this by smearing the potential just as descri
above. The quantum mechanics analogy will prove usefu
the next section when we construct an alternative continu
model.

Before leaving this section we shall indicate the deriv
tion of a nontrivial statistical relation hidden inside Eq.~3!.
First, we must define the initial condition. As mentioned b
fore, given that up spins denote uncorrupted data, the in
value of each spin is11. There is a slight subtlety of defi
nition regarding the value of the spin at the site where
BA is initially planted.~This position shall be taken to be th
origin, without any loss of generality.! We shall take this
spin to be initially21 so that immediately after the BA ha
moved away the spin at the origin has value11. Thus we
have

P~R,$s r%,0!5dR,0ds0 ,21)
rÞ0

dsr ,1
~5!

and, consequently,

Q~r ,R,0!5dR,0~122d r ,0!. ~6!

We may obtain the following two averages fro
Q(r ,R,t). The first is the average value of the spin at t
origin. This is simply given bym0(t)5(RQ(0,R,t). The
second average is the quantity(RQ(R,R,t), which corre-
sponds to averaging the value of the spin at the site wh
the BA happens to be at timet. One can prove that

(
R

Q~0,R,t !5(
R

Q~R,R,t !, ~7!

for all t. We arrive at the above result by essentially solvi
the partial difference equation~3! using discrete Fourier an
Laplace transforms. The details can be found in Appendix
One may also understand this result by considering tim
reversed paths@15#, although the form above is special to o
chosen initial condition~6!.

This result is useful for proving a more physically re
evant relation. Let us denote the average global magne
tion by

M ~ t !5(
R

(
r

@Q~r ,R,0!2Q~r ,R,t !#, ~8!

where we have defined it relative to the~infinite! initial mag-
netization. This quantity essentially measures the averag
the total number of corrupted bits~up to a factor of 2!. Sum-
ming Eq.~3! over r andR gives

M ~ t1dt !2M ~ t !52pq(
r

Q~r ,r ,t !. ~9!

Then using Eq.~7! we can rewrite the above relation in th
form
d
in
m

-

-
al

e

re

.
-

a-

of

M ~ t1dt !2M ~ t !52pq(
R

Q~0,R,t !52pqm0~ t !.

~10!

In other words, the rate of change of the mean global m
netization is proportional to the mean magnetization den
at the origin. This is a nontrivial relation between a glob
and a local quantity.

In principle, one can obtain exact results for many int
esting quantities~like the mean magnetization density or co
relation functions! by directly solving for the marginal aver
ages, as illustrated in Appendix A. However, we prefer
obtain results from a continuum theory, partly because
calculations are a little easier, but more importantly beca
we can access more sophisticated properties of the sys
such as the probability distribution of the coarse-grain
magnetization density.

III. CONTINUUM THEORY

In this section we shall introduce a particularly simp
continuum description of the data corruption process a
show its equivalence to the discrete theory of the previ
section.

There is an alternative method of characterizing the e
lution of the system other than using the evolution of t
probability distributionP(R,$s r%,t) via the master equation
This method consists of writing the local rules for the pr
cess in the spirit of a stochastic cellular automaton~SCA!
@17#. Let us focus on the case in which at each time step
BA makes a random jump to one of its nearest neighbo
and in which the spin at the site it leaves behind definit
flips. This corresponds to settingp5q51. The local rules
for such a process are easily written down. Let us denote
time-dependent position of the BA byR(t), a randomly cho-
sen unit lattice vector byl(t), and the time-dependent valu
of the spin at siter by s r(t). Then we have

R~ t1dt !5R~ t !1 l~ t !, ~11!

s r~ t1dt !5s r~ t !~122d r ,R(t)!. ~12!

We are interested in a continuum limit of these two rule
The first is nothing more than a random walk. We take
lattice vectorR(t) to be a continuum vector~i.e., each of the
d components is a real number!, and we replace the random
unit lattice vectorl(t) by a continuum vectorj(t), each com-
ponent of which is a uncorrelated Gaussian random varia
with zero mean@i.e., j i(t) is a white noise process#. The
correlator ofj is given by

^j i~ t !j j~ t8!&5D8d i , jd~ t2t8!, ~13!

where here and henceforth angular brackets indicate an
erage over the noise~or, equivalently, the paths of the BA!.
Then, on takingdt→0, Eq. ~11! assumes the form

dR

dt
5j~ t !, ~14!

which is the familiar equation for a continuum rando
walker whereD8 is the diffusion constant@14#. The second
SCA rule is more complicated to generalize to the co
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PRE 59 5175BINARY DATA CORRUPTION DUE TO A BROWNIAN AGENT
tinuum. As a first step let us define a coarse-grained mag
tization densityf(r ,t) in the following way. We imagine
defining a large region around the lattice siter and summing
all the spins in that region. Their sum~suitably normalized!
constitutesf(r ,t), with the labelr denoting a point in the
R d continuum. An entirely analogous procedure is used
motivating the Landau-Wilson free energy functional fro
the Ising model of ferromagnetism@18#. The difficulty in our
case is that we cannot derive a closed equation forf from
the discrete rule~12!. We therefore make the following ap
proximation. Splitting the RHS of Eq.~12! into two pieces,
we see that the first may be taken over to the LHS wh
may then be taken to be a time derivative in the limit ofdt
→0. The second piece resembles a decay term centere
r5R. So we postulate that the coarse-grained magnetiza
density satisfies

] tf~r ,t !52l8f~r ,t !dd
„r2R~ t !…, ~15!

wherel8 is a phenomenological parameter which descri
how strongly the magnetization density is coupled to the B
We stress that the fieldf(r ,t) is a function of the continuous
space and time variablesr andt, and afunctionalof the path
R(t) of the BA.

Now, the above heuristic derivation of the continuu
theory was based on a SCA for the case in which the
always moves (p51), and for which the spin located at th
previous BA position is always flipped (q51). In generalp
andq are both less than unity. Intuitively we expect a ve
simple renormalization of our phenomenological parame
asp andq are changed. The diffusion constantD8 should be
proportional top, and the strength of the spin-BA couplin
l8 should be proportional to bothp and, more importantly,q.
Thus we see a very close correspondence betweenD8 andl8
in the current continuum theory, and the parametersD andl
which were introduced in the continuum limit~4! of the dis-
crete equation~3!. In fact they are identical, as will emerg
in the following discussion.

One of the positive features of the continuum theory
described by Eq.~15! is that one may immediately integra
the equation to find the magnetization density as an exp
functional of the path of the BA. As an initial condition w
take f(r ,0)51 for all r . The subtlety encountered in th
discrete theory concerning the initial value of the spin at
origin disappears here since the coarse-grained functionf is
not sensitive to the value of one inverted spin. Straightf
ward integration of Eq.~15! yields

f~r ,t !5expF2l8E
0

t

dt8dd
„r2R~ t8!…G . ~16!

It is important to note at this stage that the magnetizat
densityf is clearly positive for allr andt. Therefore, within
our continuum formulation, we have ignored paths of the B
which create large patches containing a majority of do
spins~i.e., corrupted bits!. Such patches will occur, but the
frequency of occurrence is certainly very small since the s
tem starts in a completely uncorrupted state. For instance
probability for the BA to create a purely negative domain
N spins is of the ordere2N. Therefore, as long as we coars
grain the original spin model over a sufficiently large sca
e-
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we can be confident that the most important configurati
have been retained in the continuum theory. Ultimately, o
must justify such an approximationa posterioriby compari-
son with either results from the discrete theory or from n
merical simulations. As we shall see, both of these supp
the current continuum model and the approximations c
tained therein.

We shall now connect the continuum theory as given
Eq. ~16! and the continuum limit~4! of the discrete theory as
given by Eq. ~3!. The mean magnetization density in th
discrete theory is given by

mr~ t !5(
R

Q~r ,R,t ! →
CL
E ddRQ~r ,R,t !, ~17!

where, in the continuum limit, we have replaced the s
over BA positions by an integral, and the fieldQ satisfies the
imaginary-time Schro¨dinger equation as given in Eq.~4!. In
the alternative continuum theory, we can find the mean m
netization density by averaging the coarse-grained den
f(r ,t) over all pathsR(t). Each path is weighted by a
Gaussian factor

N expH 2
1

2D8
E

0

t

dt8j~ t8!2J
5N expH 2

1

2D8
E

0

t

dt8S dR

dt8
D 2J , ~18!

whereN is a normalization factor. Therefore, we can wri
the average off as a functional integral:

m~r ,t !5^f~r ,t !&

5NE DR~ t8!expH 2
1

2D8
E

0

t

dt8S dR

dt8
D 2J f~r ,t !,

5NE DR~ t8!expH 2E
0

t

dt8F 1

2D8
S dR

dt8
D 2

1l8dd
„r2R~ t8!…G J ,

5NE ddRfERf
DR~ t8!expH 2E

0

t

dt8F 1

2D8
S dR

dt8
D 2

1l8dd
„r2R~ t8!…G J , ~19!

where we have used Eq.~16! in going from the first line to
the second, and we have introduced the final position of
BA @i.e., R~t!# as a free integration variableRf in rewriting
the second line as the third. The reason for this cosm
change is to make explicit the fact that^f(r ,t)& can be ex-
pressed as a spatial integral over the final BA position, wh
the integrand is itself a path integral over BA trajectorie
This path integral is nothing more than a reexpression of
solution of an imaginary-time Schro¨dinger equation~using
the well-known Feynman path integral formulation of qua
tum mechanics@19#! for a particle in a repulsived-function
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5176 PRE 59T. J. NEWMAN AND WANNAPONG TRIAMPO
potential. We can now see the connection: Equation~19! is
an exact restatement of Eqs.~4! and ~17!, with the identifi-
cationD85D andl85l. ~So, henceforth, we shall drop th
primes in the material parameters.! To summarize, by utiliz-
ing the complementary formulations of quantum mechan
via the Schro¨dinger equation and the Feynman path integ
we have shown that the continuum limit of the master eq
tion is identical to the continuum theory constructed at
beginning of this section.

Two final points are in order. First, as noted in the pre
ous section, thed-function potential must be replaced by
smeared functionD l(r ) for d>2; thus in our continuum
theory encapsulated in Eq.~15!, we shall make a similar
replacement when studying two or higher dimensions. S
ond, we have established a connection between the m
equation and Eq.~15! only at the level of the first moment. I
is straightforward to extend each formulation to higher-or
correlation functions, and indeed one finds an exact co
spondence. For instance, we can define the marginal s
spin correlation function within the discrete theory:

Q~r1 ,r2 ,R,t ![Trss r1
s r2

P~R,$s r%,t !. ~20!

Using the master equation one can show that in the c
tinuum limit this function satisfies the Schro¨dinger equation
for a particle under the influence of two repulsived-function
potentials located atr1 and r2. Similarly, we can construc
the coarse-grained two-point correlation function from E
~16! by evaluating^f(r1 ,t)f(r2 ,t)&. It is easy to see tha
this quantity is given by an integral over the analogous p
integral for two repulsived-function potentials.

Having completed our formulation of a simple continuu
theory, and shown its equivalence to the continuum limit
the master equation, we shall proceed to the next sectio
which we present a comprehensive solution of the mode
one dimension.

IV. RESULTS IN ONE DIMENSION

In this section we restrict ourselves to one dimensi
This does not necessarily mean a single chain of si
Rather, we shall exclusively study the continuum theory
the last section, and in this case, for large enough timed
51 refers to any system which has an infinite longitudin
dimension and finite transverse dimensions~for instance, an
infinitely long strip!. This is the case, since as time procee
the correlation length will eventually become greater th
the transverse size of the system, thereby only allowing
longitudinal fluctuations to continue growing, as is the ca
in a strictly one-dimensional system.

The continuum model described in the preceding sec
can be viewed as a ‘‘nonconserved’’ version of the co
tinuum theory of vacancy-mediated diffusion~a process
which in spin language conserves magnetization! introduced
recently@8#. An exact analysis of the latter theory was po
sible using infinite-order perturbation theory in the spin-B
couplingl. We shall use the same technique here, as it le
rather directly to a full solution. Alternatively, one may solv
the Schro¨dinger equation for the marginal averages. Ho
ever, there are some important quantities~like the distribu-
tion of the magnetization density! which cannot be easily
s
l,
-

e

-
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in-

n-
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-

recovered from the latter approach.
Our starting point is the integrated solution of the co

tinuum formulation as given in Eq.~16!. First, we shall de-
rive an expression for the magnetization densitym(x,t). Per-
forming a direct average of Eq.~16! and expanding in
powers ofl(5l8), we have

m~x,t !5^f~x,t !&5 (
n50

`

~2l!nxn~x,t !, ~21!

wherex0(x,t)51, and forn.0,

xn~x,t !5
1

n! K F E
0

t

dtd„x2R~t!…GnL . ~22!

We refer the reader to Appendix B in which the above av
age is explicitly calculated. The result is

xn~x,t !5E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtng~0,t12t2!•••

3g~0,tn212tn!g~x,tn!, ~23!

whereg(x,t)5(2pDt)21/2 exp(2x2/2Dt) is the probability
density of the BA.

The structure of Eq.~23! is that of ann-fold convolution;
so we may utilize a Laplace transform to good effect. W
have~for n.0)

x̂n~x,s![E
0

`

dte2stxn~x,t !5
1

s
ĝ~0,s!n21ĝ~x,s!,

~24!

where

ĝ~x,s!5
1

~2Ds!1/2
expF2S 2s

D D 1/2

uxuG . ~25!

Performing the sum over these functions as dictated by
~21! we find

m̂~x,s!5
1

s F12
lĝ~x,s!

11lĝ~0,s!
G . ~26!

We note in passing that a similar result is easily derived
any dP(0,2). The case ofd>2 is more complicated as th
function g(0,t) is no longer integrable.

This expression for the Laplace transform ofm is exact.
This will prove to be important when we come to evalua
the distribution function ofP(m). The inverse of the Laplace
transform is given by

m~x,t !5erfF uxu

~2Dt !1/2G1expS luxu
D

1
l2t

2D D
3erfcFlS t

2D D 1/2

1
uxu

~2Dt !1/2G , ~27!
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where erf(z) and erfc(z) are error functions@20#. Consider-
ing the long-time behavior of the above expression, we ha
for x50,

m~0,t !5S 2D

pl2t
D1/2F11OS D

l2t
D G . ~28!

One can also retrieve the spatial behavior with little effo
For smallx we have

m~x,t !5m~0,t !1S 2x2

pDt D
1/2

1•••, x!~Dt !1/2. ~29!

The large-x behavior has two regimes

m~x,t !512S 2Dt

px2D1/2

expS 2
x2

2Dt D1•••, ~Dt !1/2!x

!lt, ~30!

m~x,t !512S lt

uxu D S 2Dt

px2D1/2

expS 2
x2

2Dt D1•••, x@lt.

~31!

It is interesting to note that apart from the natural diffusi
scale (Dt)1/2, there is a larger ‘‘ballistic’’ scalelt in the
system, beyond which the disordering efficacy of the BA
much reduced, since it makes so few visits to these dis
sites. There is no simple~i.e., single length! scaling form for
m(x,t).

Next we consider the continuum analogues of Eqs.~7!–
~10!. We define the average global magnetization~relative to
its initial value! as

M ~ t !5E
2`

`

dx@^f~x,0!&2^f~x,t !&#, ~32!

which may be compared to the discrete version in Eq.~8!.
Integrating and averaging the continuum model~15! yields

dM~ t !

dt
5l^f„R~ t !,t…&, ~33!

which is to be compared with Eq.~9!. This last equation
indicates that we may explicitly find an expression f
^f„R(t),t…& by calculating the time derivative of the spati
integral ofm(x,t)5^f(x,t)&. This may be done at the leve
of the perturbation series~21!, from which one may show
that the following relation holds exactly, for all times:

m~0,t !5^f„R~ t !,t…&, ~34!

which is the continuum analogue of Eq.~7!. Finally, com-
bining Eqs.~33! and ~34! we have

dM~ t !

dt
5lm~0,t !. ~35!

Thus, the nontrivial relation between the rate of change
the global magnetization and the mean of the magnetiza
density at the origin is seen to be exact within the continu
model @which complements the exact relation (10) found
e,

.

s
nt

f
n

the discrete framework#. Similar results are easily obtaine
for all dP(0,2). In Sec. V we shall derive a slightly mor
complicated form of Eq.~35! ~involving the smearing func-
tion D l) which is appropriate for higher-dimensional sy
tems. Directly from Eqs.~28! and ~35! we note thatM (t)
;At; thus, the average number of corrupted bits ind51
increases as the square root of time and is independentl.

We now turn to spatial correlations in the system. The
are most easily probed via the two-point correlation funct

C~x,t !5^f~x,t !f~0,t !&

5K expS 2lE
0

t

dt8@d„x2R~ t8!…1d„R~ t8!…# D L ,

~36!

where we have used the solution~16! in the second line. This
average can be calculated using infinite-order perturba
theory inl, just as was used to evaluatem(x,t). We write

C~x,t !5 (
n50

`

~2l!ncn~x,t !, ~37!

with c051. For n.0, a given termcn can be explicitly
evaluated by making integral representations of then d func-
tions, and performing the average over the pathsR(t) ~as
described in Appendix B!. Thus one has

cn~x,t !5E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtnE dk1

2p

3~11e2 ik1x!•••E dkn

2p
~11e2 iknx!

3expF2
D

2 (
m51

n S (
l 51

m

kl
2D ~tm2tm11!G , ~38!

with the notationtn11[0. This 2n-fold integral can be re-
duced using Laplace transform in time, such that the in
grals over$ki% may be performed, as described in Append
C. The result is

ĉn~x,s!5
1

s~2sD!n/2 H 11expF2S 2s

D D 1/2

uxuG J n

. ~39!

Summing over these functions with a weight of (2l)n and
inverting the Laplace transform using a Bromwich integ
@21#, we have

C~x,t !5E
g

ds

2p i

exp~s t̃!

s1/2@11s1/21exp~2s1/2ux̃u!#
, ~40!

where, as usual, the contourg is parallel to the imaginary
axis and to the right of any singularities. We have resca
space and time asx̃5xl/D and t̃ 5tl2/2D.

This integral may be evaluated for larget̃ in the following
way. We reexpress the integral as an expansion in power
exp(2s1/2ux̃u) ~which is not the same as our original expan
sion in powers ofl). So we have
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C~x,t !5 (
n50

`

~21!nI n~ x̃, t̃ !, ~41!

with

I n5E
g

ds

2p i

es t̃2ns1/2ux̃u

s1/2~11s1/2!n11

5
1

2pE0

`

du
e2u t̃

u1/2 F e2 inu1/2ux̃u

~11 iu1/2!n
1

einu1/2ux̃u

~12 iu1/2!nG , ~42!

where the second line is the explicit form of the integral af
integrating around the only singularity—a branch point
cated ats50. The integral overu may be simplified fort̃
@1 to give

I n.
1

p t̃ 1/2E0

`

du
e2u

u1/2
cosS nu1/2ux̃u

t̃ 1/2 D 5
1

~p t̃ !1/2
expS 2

n2x̃2

4 t̃
D .

~43!

In these rescaled units, we have, from Eq.~28!, m(0,t̃ )
.(p t̃ )21/2 ~for large t̃ ). Thus, we may resum the function
$I n% to find

C~x,t !

m~0,t !
. (

n50

`

~21!nexpS 2
n2x̃2

4 t̃
D

5
1

2
@11u4„0,exp~2x2/2Dt !…#, ~44!

whereu4(z,q) is a Jacobi theta function~with normq) @20#.
Note, that we have written the last line in unscaled variab
and we see that the ratio of the correlation function tom(0,t)
does not depend onl for large times. The behavior o
C(x,t) in the limits of large and smallx are as follows. For
largex, the fields at the origin and atx will be uncorrelated,
so thatC(x,t).m(0,t)m(x,t).m(0,t), the latter result fol-
lowing sincem(x,t).1 for x@At. At the other extreme, a
x→0, C(x,t)→^f(0,t)2&. Referring to the exact solution o
the continuum model, Eq.~16!, one can see that the secon
moment of the magnetization density is actually given
actly bym(0,t;2l) @where the last~optional! argument indi-
cates the parametric dependence on the spin-BA coupli#.
So for long times we take the expression form(0,t;l) given
in Eq. ~28! and replacel by 2l. Therefore ^f(0,t)2&
.m(0,t;l)/2 for t̃ @1. Thus, the limits of the function
C(x,t)/m(0,t) are 1/2~for small x) and unity~for largex),
which is naturally consistent with the analytic form give
above in terms of the Jacobi theta function. In Sec. VI
shall compare this expression with results from a numer
simulation of the discrete model described earlier.

To complete our study of the properties of this system
one dimension, we shall consider the complete probab
distributionP(f,x,t) of the magnetization density. We sha
be able to calculate this exactly, since~i! we can see from
Eq. ~16! that thenth moment of the density is related to th
mean density with a replacementl→nl and~ii ! we have an
exactexpression for the mean density~albeit in the Laplace
transform variables). The first point is a fortuitous propert
r
-

s,

-

e
al

n
y

of our continuum model which we should certainly explo
The second property is less obvious. One might imagine t
assuming we know all density moments via the first, even
asymptotic form for the mean density would be sufficient
calculate the probability distribution~for large times!. This is
not the case as we shall see—the complete analytic struc
of m(x,t;l) is required in order to reconstruct the distrib
tion P.

We defineP via

P~f,x,t !5^d„f2fR~x,t !…&, ~45!

wherefR(x,t) is the stochastic field solution given in Eq
~16!. We can reexpress thed function using a frequency
integral, and expand in powers of the field as follows:

P~f,x,t !5E
2`

` dv

2p
e2 ivf^exp@ ivfR~x,t !#&

5E
2`

` dv

2p
e2 ivf (

n50

`
~ iv!n

n!
^fR~x,t !n&

5E
2`

` dv

2p
e2 ivf (

n50

`
~ iv!n

n!
m~x,t;nl!, ~46!

the last line following from property~i! above.
So the Laplace transform~over time! of P is given in

terms of the Laplace transform ofm(x,t;nl). From Eq.~26!
we have

m̂~x,s;nl!5
1

s F12
nlĝ~x,s!

11nlĝ~0,s!
G

5
ĝ~0,s!2ĝ~x,s!

sĝ~0,s!
1

ĝ~x,s!

sĝ~0,s!@11nlĝ~0,s!#
,

~47!

where the second line follows from some algebraic mani
lations. The first term is easily handled as it is independen
n. Thus the sum overn for this term@as is required in Eq.
~46!# yields a factor of exp(iv) which finally yields a factor
of d(12f) when integrated overv. The second term is
more interesting. Details of how to perform the sum oven
and the frequency integral may be found in Appendix D. T
final result forP̂(f,x,s) reads

P̂~f,x,s!5
ĝ~0,s!2ĝ~x,s!

sĝ~0,s!
d~12f!1

ĝ~x,s!

ĝ~0,s!2

1

slf

3expF2
1

lĝ~0,s!
ln S 1

f D G . ~48!

This form for the Laplace transform of the probability distr
bution may be easily generalized for anydP(0,2). Finally
we must invert the Laplace transform. To this end we requ
the explicit form for ĝ(x,s) as given in Eq.~25!. Inserting
this into Eq.~48! and inverting the transform, we have ou
final result
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P~f,x,t !5d~12f!erf F uxu

~2Dt !1/2G1
1

~pt !1/2

1

l̃f

3expH 2F uxu

~2Dt !1/2
2

ln~f!

2l̃t1/2G 2J , ~49!

where erf(z) is the error function@20#, and we have defined
l̃5l/(2D)1/2. This is illustrated in Fig. 2 forx51 ~and D

51,l̃5A2), and three different times corresponding tox2

@2Dt, x2;2Dt, andx2!2Dt.
In particular, the probability distribution for the magne

zation density at the origin takes the form

P~f,0,t !5
1

~pt !1/2

1

l̃f
expF2

@ ln~f!#2

4l̃2t
G , ~50!

which is a pure log-normal distribution. This result is ve
revealing, as it shows that the fluctuations in this system
extreme. For instance, we have already seen that themean
value of the density~at the origin! decays asm(0,t);1/At.
However, if one asks how thetypical ~or most likely! value
decays, one can see from Eq.~50! that ^f(0,t)& typ

;exp(22l̃2t). Thus, as time proceeds, the typical value off
decays to zero exponentially fast, while the mean dec
slowly as 1/At. This is possible because the log-normal d
tribution has a long tail, extending out to the extreme va
of f51. In fact the end point of the distribution@i.e.,
P(1,0,t)] also decays as 1/At which is consistent with the
known persistence properties of a random walker ind51
~namely, the probability of a walkerneverhaving returned to
the origin after timet decays as 1/At). In Fig. 3 we illustrate
P(f,0,t) for three different times. As a final remark, w
note that if we erroneously use the asymptotic form~28! for
m(0,t;nl) to build the distribution function, we find tha
]fP(f,0,t) is equal to]fd(f)2d(12f)/lAt, thus empha-
sizing the fact that we need the entire analytic form
m(0,t;nl) to successfully construct the distributionP.

FIG. 2. P(f,x,t) versusf, as given in Eq.~49!, with x51, l̃
5A2, for three different times,t50.5, 1.0, 1.5. The thick vertica
line represents thed function atf51.
re

ys
-
e

f

This ends a rather long section on the analytic proper
of the continuum model ind51. In the next section we sha
briefly study the case of higher dimensions, and then in S
VI we shall compare our results with some numerical sim
lations performed on the original discrete model.

V. RESULTS IN HIGHER DIMENSIONS

As we mentioned several times in the preceding two s
tions, the continuum theory requires some regularization
d>2. This can be most easily~and physically! accomplished
by smearing thed-function interaction between the BA an
the spins. Thus, our continuum model takes the form

] tf~r ,t !52lf~r ,t !D l„r2R~ t !…, ~51!

where D l(r ) is a normalized function which is sharpl
peaked over a region of linear dimensionl around the point
r . @A good choice would beD l; l 2dexp(2r2/l2).#

In this section we shall analyze some basic properties
Eq. ~51! for generalD l . Then we will use a somewhat mor
crude approach to estimate the mean magnetization de
~at the origin! as a function of time ind52.

Although we have generalized our continuum theo
somewhat, we can still make substantial headway by fi
integrating the equation of motion and then using infini
order perturbation theory. The first step yields

f~r ,t !5expF2lE
0

t

dt8D l„r2R~ t8!…G , ~52!

while the second consists of expanding this equation in p
ers ofl and averaging term by term:

m~r ,t !5^f~r ,t !&5 (
n50

`

~2l!nxn~r ,t !, ~53!

wherex0(r ,t)51 and, forn.0,

xn~r ,t !5
1

n! K F E
0

t

dtD l„r2R~t!…GnL . ~54!

FIG. 3. P(f,0,t) versusf, as given in Eq.~50!, for three dif-
ferent times.
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By making a Fourier representation of the interaction fu
tion D l , performing the average over paths~see Appendix
B!, and finally Laplace transforming in time, we arrive at

x̂n~r ,s!5
1

s H )
m51

n E ddkm

~2p!d

D̃ l~km2km21!

~s1km
2 !

J exp@ ikn•r #,

~55!

with the conventionk0[0.
We shall be concerned with two quantities. The first is

smeared mean magnetization density near the origin, and
second is the global magnetization. These are given by

ms~0,t ![E ddrD l~r !m~r ,t ! ~56!

and

M ~ t !5E ddr @^f~r ,0!&2^f~r ,t !&#, ~57!

respectively. We shall prove that

dM~ t !

dt
5lms~0,t !, ~58!

which is the smeared analog of the global versus~strictly!
local relation~35! we proved ford,2. Comparing Eqs.~53!
and ~56!, we see that

ms~0,t !5 (
n50

`

~2l!nhn~ t !, ~59!

where, in Laplace transform space,

ĥn~s!5E ddrD l~r !x̂n~s!

5
1

s H )
m51

n E ddkm

~2p!d

D̃ l~km2km21!

~s1km
2 !

J D̃ l~kn!.

~60!

Similarly, we have

dM~ t !

dt
52 (

n50

`

~2l!nzn~ t !, ~61!

with

zn~ t !5
d

dtE ddrxn~r ,t !. ~62!

For n.0, xn(r ,0)50, so that

z̃n~s!5sE ddr x̃n~r ,s!. ~63!

Using Eq.~55! we may evaluate the above integral to giv

z̃n~s!5H )
m51

n E ddkm

~2p!d

D̃ l~km2km21!

~s1km
2 !

J dd~kn!. ~64!
-

a
he

Performing the integral overkn immediately yields

ẑn~s!5h̃n21~s!. ~65!

Thus, comparing Eqs.~59!, ~61!, and~65! we see the validity
of relation ~58!.

As a corollary, by integrating the averaged equation
motion ~51! over space, we have

dM~ t !

dt
5lE ddr ^D l„r2R~ t !…f~r ,t !&. ~66!

When compared with Eq.~58!, the above relation gives us

ms~ t !5E ddrD l~r !^f~r ,t !&5E ddr ^D l„r2R~ t !…f~r ,t !&,

~67!

which is the smeared version of the local relation~34!
proved in Sec. III. We note that, although we have be
concerned with a sharply peaked interaction function, re
tions ~58! and ~67! hold for any function D(r ).

This ends the more rigorous part of the present section
the remainder we shall just mention some explicit results
the mean local magnetization density~at the origin!, which
are obtained with a cruder regularization.

The difficulty with making headway using the smoothin
function is that then-fold integrals over theD l ’s are intrac-
table~unless one can find a particularly ‘‘friendly’’ form fo
D l .) As an alternative approach, we return to the sharp D
d function as used in Sec. IV. We remarked that then-fold
convolution integrals were divergent due to the noninteg
bility of g(0,t) for d>2. To evade this difficulty we can
simply impose a cutoff to the integration limits. This
closely connected to introducing a microscopic time sc
into the temporal correlations of the BA. Such an regulari
tion procedure was used in Ref.@8#, and the results so ob
tained were shown to be equivalent to previously kno
exact results@7#. So we shall use the same procedure he
but with due caution.

First, we considerd52. In a precisely analogous way t
the calculation in Sec. IV, we expand the field solution~16!
in powers ofl and average term by term. Thus, we have@cf.
Eqs.~21!–~23!#

m~0,t !5^f~0,t !&5 (
n50

`

~2l!nxn~0,t !, ~68!

wherex0(0,t)51 and forn.0,

xn~0,t !5E
t0

t2t0
dt1E

t0

t12t0
dt2•••E

t0

tn212t0
dtng

3~0,t12t2!•••g~0,tn212tn!g~0,tn!.

~69!

In this case, the probability distribution of the BA at th
origin has the formg(0,t)5(2pDt)21. Note that we have
inserted the microscopic time regulatort0 in the limits of the
time integrals. Our strategy is to evaluate the time integr
one by one, keeping only the most singular term at each s
We shall use the general result~for t@t0)
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E
t0

t2t0
dt

@ ln~t/t0!#m

~ t2t!t
;

~m12!

~m11!

@ ln~ t/t0!#m11

t
. ~70!

Therefore, we have the dominant contribution

xn~0,t !;
@ ln~ t/t0!#n

~2pD !n
. ~71!

Inserting this result into Eq.~68! and summing overn we
have the asymptotic form

m~0,t !;F11
l

2pD
lnS t

t0
D G21

. ~72!

Thus the magnetization at the origin does decay to zero
large times, but logarithmically slowly. From relation~58!
we see that the mean global magnetization increase
M (t);t/ ln(t).

The same kind of analysis can be repeated ford.2, and
one finds thatm(0,t) saturates to a constant for large time
which implies thatM (t);t for large times. These results a
easily understood from the recurrent properties of the
~i.e., a random walker returns to its starting point with pro
ability 1, only for d<2). It would be more interesting to
derive the distribution of the magnetization density ford
>2, but this requires the more careful regularization meth
involving the smoothing functionD l(r ) and thus lies beyond
the scope of the present work.

@In d52 one can capitalize on the slightly crude res
~72! obtained using the cutofft0, combined with the exac
property ^f(0,t;l)n&5m(0,t;nl) to derive a form for the
distribution function P(f,0,t). Such an approach yield
P(f,0,t)5b(t)fb(t)21, with b52pD/l ln(t/t0). However,
this result is not to be taken too seriously, since we need
whole analytic structure ofm(0,t;nl) in order to deriveP,
as evidenced in the previous section.#

VI. NUMERICAL SIMULATION

We have performed extensive numerical simulations
the discrete model, as defined in Sec. II, in order to test
results obtained in the last two sections from the continu
theory. In all of the simulations for which we present resu
we have set the hopping ratep of the BA, along with the
flipping probabilityq, to unity. We have experimented wit
decreasing the flipping probability, and have found that
only effect is to renormalize the effective spin-BA couplin
l, such thatl}q, as expected.

Most of our results are obtained from a one-dimensio
chain of sites. The chain length is unimportant, as long
one ensures that the BA has never touched the edges in
of its realizations up to the latest time at which data
extracted. Generally we average over between 106 and 108

realizations~or runs! depending on the desired quality of th
data. Such simulations required a few days on a DEC Al
233 MHz workstation. In a given run, at each time step
BA is moved left or right with equal probability and the sp
it leaves behind is flipped. Each run starts with the sa
initial configuration, namely, all spins up, except the spin
the origin ~which is the starting site of the BA! which is
pointed down.~This means that all spins are up after o
or

as
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time step, since the BA has moved away from the origin a
flipped the down spin.!

In Fig. 4 we show the measured mean magnetization d
sity at the origin, along with the quantity(RQ(R,R,t) @cf.
Eq. ~2!#. They are seen to be identical, thus confirming re
tion ~7! and its continuum counterpart~34!. The solid line is
the asymptotic prediction~28! from the continuum theory. It
is seen to be in good agreement with the data, as the line
a slope of (21/2). From the fit of this log-log plot we can
read off the effective value ofl, since from Eq.~28! the
prefactor of 1/At is given by (2/pl2)1/2. ~The diffusion con-
stant for the lattice random walk is unity.! We have fitted the
data toc/At with c50.40(1), which yieldsl51.99(1). In
Fig. 5 we plot the smallx/At dependence ofm(x,t) on a
log-log scale. The data are well fitted by the prediction giv
in Eq. ~29!. In Fig. 6 we plot 12m(x,t) versusx/At. Note
that good data collapse is found for intermediate values
x/At. We have been unable to numerically probe the ballis
scalelt. ~Note, that the theoretical curves shown in the la
two figures are plotted with no free parameters.!

In Fig. 7 we plot the discrete time derivative of the tot
number of down spins,N(t) @which is M (t)/2], along with
m(0,t). The two curves are indistinguishable within the n
merical noise, thus confirming the global/local relation~10!.
This also provides secondary confirmation of the continu
form of this relation~35! with l.2.

FIG. 4. Log-log plot of m0(t) ~diamonds! and (RQ(R,R,t)
~pluses! versus time fromd51 numerical simulation. The solid line
is the asymptotic theoretical prediction~28!.

FIG. 5. Log-log plot ofmx(t)2m0(t) versusx/At for a time of
103 in d51. The solid line is the theoretical prediction~29!.
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In Fig. 8 we plot the ratio of the measured two-poi
correlation function@divided by m(0,t)] versusx/At. Note
that it varies from 1/2~at smallx) to unity ~at largex) as
expected. The data from two different times are shown,
one sees excellent agreement with the theoretical predic
~44!, which is plotted withno free parameters. This agree
ment provides very strong evidence for the validity of o
whole continuum approach.

Briefly, we mention simulations ind52. Higher-
dimensional simulations are not too difficult as one is o
ever moving the single BA at each time step. In Fig. 9,
show m0(t) and (RQ(R,R,t). The data for the two func-
tions are identical, verifying the discrete relation~7! in two
dimensions, as well as confirming the continuum result~67!.
We have plotted the inverse of these functions against lt)
in order to compare with the theoretical prediction~72!.
Again, good agreement is found, thereby confirming the l
rigorous method by which the two-dimensional result w
obtained.

Finally, we mention our attempt to measure the proba
ity distribution of the coarse-grained magnetization dens
at the origin~in d51), which was found from the continuum
theory to be a log-normal distribution. Clearly, it does n
make sense to measure moments of the spin at the or

FIG. 7. Log-log plot of the time derivative of the total numb
of minus spins~diamonds! and ofm0(t) ~pluses! versus time ind
51. The solid line is the theoretical prediction~28!.

FIG. 6. Log-log plot of 12m0(t) versusx/At for times 103 and
104 in d51. Also shown is the theoretical prediction~30! for the
intermediate regime.
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since the odd~even! moments are equal tom0(t) ~unity!.
Therefore, we define a coarse-grained magnetization ov
patch of spins. If the patch is taken too small, the coa
graining will be ineffective, while if the patch is taken to
large, the BA will take a long time to leave the patch, and
asymptotic behavior will be numerically inaccessible. So
have compromised and have used a patch containing
spins. We have binned the patch magnetization from8

independent runs and generated the histograms shown in
10. Note that because the patch size is modest, the h
grams have nonzero weight in the negativef region, in con-
trast to the strict continuum limit. However, we do see th
for f near unity, the histograms have a robust tail, which
the signature that extreme fluctuations are important.

VII. CONCLUSIONS

In this paper we have introduced and analyzed a sim
model of data corruption due to a Brownian agent. In Sec
we introduced a discrete version of the model, which co
sists of a BA flipping bits~or spins! on a lattice. The mode
is nontrivial since the value of a given spin depends v
sensitively on the path of the BA~i.e., whether the spin ha
been visited an odd or even number of times!. We presented
a master equation formulation of the model and derived
equation of motion for the marginal average of the magn
zation density. In the continuum limit, this quantity was se
to satisfy an imaginary-time Schro¨dinger equation~ITSE! for

FIG. 8. The ratioCx(t)/m0(t) plotted againstx/At for times of
100 ~pluses! and 500~diamonds! in d51. The solid line is the
theoretical prediction~44!.

FIG. 9. Linear-log plot of 1/m0(t) versus time ford52. The
solid line is the theoretical prediction~72!.
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a particle in a repulsived-function potential. Higher-orde
marginal averages also satisfy ITSE’s with an additional
pulsive d-function potential for each spin being average
We also proved that there is an exact proportionality betw
the rate of change of the mean global magnetizationM (t) @as
defined in Eq.~8!# and the mean magnetization density at t
origin, thus revealing a nontrivial statistical relation betwe
a global and a local quantity.

In Sec. III we recast the discrete model as a stocha
cellular automaton. From the local rules of the SCA,
postulated a particularly simple continuum theory written
terms of a coarse-grained magnetization densityf(r ,t)
@which is a functional of the walkR(t) of the BA#. We
showed that averages of this stochastic field may be reca
integrals over the final BA position, the integrands of whi
are imaginary-time path integrals~ITPI’s!. These ITPI’s
were shown to describe quantum systems of repuls
d-function potentials identical to those revealed through
ITSE formulation of the master equation. In this way w
have confirmed that the continuum theory is a good rep
sentation of the underlying discrete model.~It is worth men-
tioning that averages of 1/f correspond to the quantum me
chanics of anattractive d-function potential. In this case
there is the possibility of a sharp transition in behavior
d.2 as one variesl, since bound states only exist for
sufficiently attractive well.!

In Sec. IV we thoroughly examined the properties of t
continuum theory ford51. First, we derived an exact ex
pression for the evolution of the magnetization dens
m(x,t), and found its spatial variation for small and largex.
In particular we foundm(0,t);1/lAt for large times, and
also the existence of both a diffusive and a ballistic scale
m(x,t). Using the exact result form(x,t) enabled us to prove
that the rate of change ofM (t) is proportional tom(0,t) for
all times~with proportionality constantl) which is the con-
tinuum analog of the global/local relation that was proved
Sec. II. We then studied the two-point correlation functi
C(x,t). An exact expression was found for the Lapla
transform of this quantity, from which we were able to e
tract its long-time behavior, which is expressed in terms o

FIG. 10. Probability distribution of patch~21 spins! magnetiza-
tion for times of 102, 103, and 104 in d51. Note the robust tail for
values of patch magnetization near unity.
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Jacobi theta function as shown in Eq.~44!. The correlation
function has an asymptotic scaling form; namely, the ra
C(x,t)/m(0,t) depends only onx/At. Finally, in Sec. IV, we
examined the probability densityP of the magnetization den
sity. Using a fortuitous property of the original continuu
theory which enables us to represent thenth moment of the
magnetization density in terms ofm(x,t), along with our
exact expression for this latter quantity, we were able
derive an exact expression forP(f,x,t) as shown in Eq.
~49!. In particular, settingx50 reveals thatP(f,0,t) is a
pure log-normal distribution. This last result emphasizes
importance of extreme fluctuations in this system. For
stance,m(0,t) decays as 1/At, while the typical value of the
magnetization density at the origin~i.e., the mode ofP) de-
cays as exp(2l2t/D).

In Sec. V we briefly examined higher dimensions. Ford
>2 it is necessary to regularize the continuum theory, m
appropriately with a smeared interaction between the BA
the spins. Using an arbitrary interaction functionD l(r )
~which has a linear scalel ) we were able to prove a mor
general form of the global/local relation, as shown in E
~58!. We then concentrated ond52, and using a crude
regularization~namely, introducing a microscopic correla
tion time t0), we were able to derive an expression for t
asymptotic decay ofm(0,t). This decay@cf. Eq. ~72!# is seen
to be logarithmically slow.

In Sec. VI we presented our results from extensive n
merical simulations of the original lattice model. Most of o
numerical work examines the case ofd51. We measured
the spatial and temporal variation of the mean magnetiza
density, the mean global magnetization, and the two-po
correlation functionCx(t). In all cases we found excellen
agreement between our data and the theoretical predict
arising from the continuum model. In particular, the agre
ment between the theoretical form forC(x,t) and the nu-
merical data is very satisfying, as there are no free par
eters to adjust. We also measuredm0(t) in two-dimensional
simulations, and found good agreement with the predic
logarithmic decay. Finally we attempted to measure
probability distribution of the magnetization density, by bi
ning the magnetization of a spin patch~containing 21 spins!
from 108 realizations. The results are not of high enou
quality to directly compare with the derived log-normal di
tribution; however, we do see clear evidence of a long rob
tail of the histogram for values off near unity, which is a
clear signature of the importance of extreme fluctuations

In conclusion, we have introduced and solved a mode
which a BA interacts with a bimodal environment~i.e., a
medium containing two types of particles, spins, bits, et!.
Our primary application has been an environment compo
of bits of data, which the BA steadily corrupts. We ha
been interested in the statistical correlations and fluctuat
of the disordered medium, and our exact results~arising from
a simple continuum model! reveal the correlations to be non
trivial and the fluctuations to be extreme in nature. The
statements are made quantitative by the form of the tw
point correlation function and the probability distribution
the density of corrupted bits. There are many directions
future work, foremost among which are~i! calculating the
distributionP in d52 and determining its sensitivity to th
smearing functionD l , ~ii ! investigating autocorrelation ef
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fects in one dimension, and~iii ! refining the model to take
into account relevant factors~like a backcoupling between
the environment and the BA or an asymmetry in the flipp
probability! which will arise if one tries to make a stronge
connection to real processes.

The model may also be seen to be a very simplified v
sion of other systems. For instance the bistable medium
be taken to be composed of two chemical speciesA and B
~with vanishingly low mobility! and the BA to be a high-
mobility catalyst, inducing a reversible reaction betweenA
andB ~and vice versa!. Alternatively we can think of the BA
as a wandering impurity in an ionic crystal~such as an anion
or cation vacancy in NaCl! or a semiconductor compoun
~such as Zn in GaAs!, which has a small probability of reor
dering the local biatomic structure as it passes throug
given unit cell@22#.

The data corruption process appears to us the most in
esting application, as well has being the most potentia
relevant. This is especially true given the enormous effo
dedicated to creating memory storage devices of e
decreasing size. Such miniaturization will lead to new cau
of soft error production@12#, among which will inevitably be
found the Brownian agent.
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APPENDIX A

In this appendix we outline the solution to the discre
equation ~3! for the marginal averageQ(r ,R,t). This is
achieved by use of discrete Fourier and Laplace transfo
defined via

FkuR†Lzut@Q~r ,R,t !#‡5 (
n50

`

zn(
R

Q~r ,R,ndt !exp~ ik•R!

~A1!

~with t5ndt). By self-consistently determining the functio
Q(r ,r ,t), one can explicitly solve for the double transfor
of Q. Inverting the discrete Fourier transform and summ
over R one finds@with the particular choice of initial condi
tion ~6!#

(
R
Lzut@Q~R,R,t !#

5
1

~12z! H 122~12z!E
BZ

ddkE~k,z!

11~zq/d!E
BZ

ddkE~k,z!(
l

e2 ik• lJ ,

~A2!

where*BZ indicates integration over the first Brillouin zon
and
r-
an

a

r-
y
ts
r-
s

,

e
f

s

g

E~k,z!5H 12z1
qz

2d (
l

@12exp~2 ik• l!#J 21

. ~A3!

Similarly one can find an explicit expression fo
(RLzut@Q(0,R,t)#. The expressions can be shown to
equal, thus proving relation~7! as given in the main text.

APPENDIX B

In this appendix we outine the procedure for averag
the expression in Eq.~22!. First, we time order the integrals
thereby absorbing the factor of 1/n!. Then, making an inte-
gral representation of each Diracd function, we have

xn~x,t !5E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtnE dk1eik1x

•••

3E dkneiknx^exp@2 ik1R~t1!2•••2 iknR~tn!#&.

~B1!

Using the solution of Eq.~14!, we may rewrite the average i
Eq. ~B1! as

K expF2 ik1E
t2

t1
dtj~t!2 i ~k11k2!E

t3

t2
dtj~t!

2•••2 i ~k11•••1kn!E
0

tn
dtj~t!G L . ~B2!

The Gaussian average over the noise may now be perform
and the above expression reduces to

expH 2
D

2
@k1

2~t12t2!1~k11k2!2~t22t3!1•••

1~k11•••1kn!2tn#J . ~B3!

We now insert this expression back into Eq.~B1!, and make
the change of variablesk185k1 ,k285k11k2 , . . . ,kn85k1

1•••1kn . The integrals over$kj8% are easily performed and
we arrive at Eq.~23! in the main text.

APPENDIX C

In this appendix we outline the evaluation of the 2n-fold
integral forcn(x,t) given in Eq.~38!. We note first that the
time integrals have the form of an-fold convolution. Thus,
we can Laplace transform the expression to find

ĉn~x,s!5
1

sE dk1

2p
~11e2 ik1x!•••E dkn

2p
~11e2 iknx!

3 )
m51

n
1

@s1~D/2!~k11•••1km!2#
. ~C1!

We make the change of variablek185k1 ,k285k1

1k2 , . . . ,kn85k11•••1kn , and rearrange the integrals t
give
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ĉn~x,s!5
1

sE dk18

2p
@s1~D/2!k18

2#21
•••E dkn8

2p

3@s1~D/2!kn8
2#21

3 )
m51

n

$11exp@2 i ~km8 2km218 !x#%, ~C2!

with the understanding thatk08[0. We now multiply out the
product which gives us 2n terms. These are grouped inton
11 sets, themth set containingCm

n terms which are equa
after integration. Thus each term in themth set~within the
integrals! may be taken to containm factors ofeik jx ~where
j 51, . . . ,m) and (n2m) factors of unity. Using the integra

E
2`

` dk

2p

eikx

@s1~D/2!k2#
5

1

~2sD!1/2
expF2S 2s

D D 1/2

uxuG ,
~C3!

we can reduce Eq.~C2! to the form

ĉn~x,s!5
1

s (
m50

n

Cm
n F 1

~2sD!1/2G n

expF2mS 2s

D D 1/2

uxuG .
~C4!

Performing the binomial sum gives Eq.~39! in the main text.

APPENDIX D

In this appendix we outline the derivation of Eq.~48!
from Eqs. ~46! and ~47!. The only nontrivial aspect of the
derivation is the frequency integral and sum~over n) of the
second term in Eq.~47!. Ignoring the prefactor of that term
nts

,

s.

ia
@namely, ĝ(x,s)/sĝ(0,s)] we must evaluate a quantit
Q(s,f), which has the form

Q~s,f![E
2`

` dv

2p
e2 ivf (

n50

`
~ iv!n

n!

1

11nlĝ~0,s!
.

~D1!

In order to perform the sum, we introduce the integral re
resentation

1

11nlĝ~0,s!
5E

0

`

du exp$2u@11nlĝ~0,s!#%. ~D2!

The sum overn now reconstitutes an exponential functio
and we have

Q~s,f!5E
0

`

du e2uE
2`

` dv

2p
e2 ivf exp~ ive2ulĝ!.

~D3!

The integral overv is easily done to give

Q~s,f!5E
0

`

du e2ud~f2e2ulĝ!. ~D4!

Finally, changing variables tov5e2ulĝ we have

Q~s,f!5
1

lĝ~0,s!f
expF2

1

lĝ~0,s!
ln S 1

f D G . ~D5!

Using this result forQ in conjunction with Eqs.~46! and~47!
we have Eq.~48! in the main text.
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